Higher Order Birkhoff Averages

نویسنده

  • Thomas Jordan
چکیده

There are well-known examples of dynamical systems for which the Birkhoff averages with respect to a given observable along some or all of the orbits do not converge. It has been suggested that such orbits could be classified using higher order averages. In the case of a bounded observable, we show that a classical result of G.H. Hardy implies that if the Birkhoff averages do not converge, then neither do the higher order averages. If the Birkhoff averages do not converge then we may denote by [αk, βk] the limit set of the k-th order averages. The sequence of intervals thus generated is nested: [αk+1, βk+1] ⊂ [αk, βk]. We can thus make a distinction among nonconvergent Birkhoff averages; either: B1. ∩∞ k=1 [αk, βk] is a point B∞, or, B2. ∩∞ k=1 [αk, βk] is an interval [α∞, β∞]. We give characterizations of the types B1 and B2 in terms of how slowly they oscillate and we give examples that exhibit both behaviours B1 and B2 in the context of full shifts on finite symbols and “Bowen’s example”. For finite full shifts, we show that the set of orbits with type B2 behaviour has full topological entropy. ∗Corresponding author.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multifractal Structure of Two-dimensional Horseshoes

We give a complete description of the dimension spectra of Birkhoff averages on a hyperbolic set of a surface diffeomorphism. The main novelty is that we are able to consider simultaneously Birkhoff averages into the future and into the past, i.e., both for positive and negative time. We emphasize that the description of these spectra is not a consequence of the available results in the case of...

متن کامل

Birkhoff Averages for Hyperbolic Flows: Variational Principles and Applications

Abstract. We establish a higher-dimensional version of multifractal analysis for hyperbolic flows. This means that we consider simultaneously the level sets of several Birkhoff averages. Examples are the Lyapunov exponents as well as the pointwise dimension and the local entropy of a given measure. More precisely, we consider multifractal spectra associated to multi-dimensional parameters, obta...

متن کامل

Irregular Sets for Ratios of Birkhoff Averages Are Residual

It follows from Birkhoff’s Ergodic Theorem that the irregular set of points for which the Birkhoff averages of a given continuous function diverge has zero measure with respect to any finite invariant measure. In strong contrast, for systems with the weak specification property, we show here that if the irregular set is nonempty, then it is residual. This includes topologically transitive topol...

متن کامل

Invariant Sets with Zero Measure and Full Hausdorff Dimension

For a subshift of finite type and a fixed Hölder continuous function, the zero measure invariant set of points where the Birkhoff averages do not exist is either empty or carries full Hausdorff dimension. Similar statements hold for conformal repellers and two-dimensional horseshoes, and the set of points where the pointwise dimensions, local entropies, Lyapunov exponents, and Birkhoff averages...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998